## CORRELATION AND REGRESSION

G. Ramakrishna

Correlation is a measure of association between variables

- A statistic that quantifies a relation between two variables
- Can be either positive or negative
- Falls between -1.00 and 1.00
- The value of the number (not the sign) indicates the strength of the relation

# CORRELATION

A correlation is a relationship between two variables. The data can be represented by the ordered pairs (x, y) where x is the **independent** (or **explanatory**) **variable**, and y is the **dependent** (or **response**) **variable**.

A **scatter plot** can be used to determine whether a linear (straight line) correlation exists between two variables.

## Example:







Negative Linear Correlation





### Linear relationships





#### Curvilinear relationships









The **correlation coefficient** is a measure of the strength and the direction of a linear relationship between two variables. The symbol r represents the sample correlation coefficient. The formula for r is

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}}.$$

The range of the correlation coefficient is -1 to 1. If *x* and *y* have a strong positive linear correlation, *r* is close to 1. If *x* and *y* have a strong negative linear correlation, *r* is close to -1. If there is no linear correlation or a weak linear correlation, *r* is close to 0.



Strong negative correlation





# CORRELATION COEFFICIENT Example:

Calculate the correlation coefficient r for the following data.



## Example:

The following data represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday.

- a.) Display the scatter plot.
- b.) Calculate the correlation coefficient *r*.

| Hours, <i>x</i> | 0  | 1  | 2  | 3  | 3  | 5  | 5  | 5  | 6  | 7  | 7  | 10 |
|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Test score, $y$ | 96 | 85 | 82 | 74 | 95 | 68 | 76 | 84 | 58 | 65 | 75 | 50 |

Continued.

## Example continued:

| Hours, <i>x</i> | 0  | 1  | 2  | 3  | 3  | 5  | 5  | 5  | 6  | 7  | 7  | 10 |
|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Test score, $y$ | 96 | 85 | 82 | 74 | 95 | 68 | 76 | 84 | 58 | 65 | 75 | 50 |



Continued.

## Example continued:

| Hours, x      | 0    | 1    | 2    | 3    | 3    | 5    | 5    | 5    | 6    | 7    | 7    | 10   |
|---------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Test score, y | 96   | 85   | 82   | 74   | 95   | 68   | 76   | 84   | 58   | 65   | 75   | 50   |
| XY            | 0    | 85   | 164  | 222  | 285  | 340  | 380  | 420  | 348  | 455  | 525  | 500  |
| $X^2$         | 0    | 1    | 4    | 9    | 9    | 25   | 25   | 25   | 36   | 49   | 49   | 100  |
| $y^2$         | 9216 | 7225 | 6724 | 5476 | 9025 | 4624 | 5776 | 7056 | 3364 | 4225 | 5625 | 2500 |

 $\sum x = 54$   $\sum y = 908$   $\sum xy = 3724$   $\sum x^2 = 332$   $\sum y^2 = 70836$ 

 $r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}} = \frac{12(3724) - (54)(908)}{\sqrt{12(332) - 54^2}\sqrt{12(70836) - (908)^2}} \approx -0.831$ 

There is a strong negative linear correlation. As the number of hours spent watching TV increases, the test scores tend to decrease.

# TESTING A POPULATION CORRELATION COEFFICIENT

Once the sample correlation coefficient r has been calculated, we need to determine whether there is enough evidence to decide that the population correlation coefficient  $\rho$  is significant at a specified level of significance.

If |r| is greater than the critical value, there is enough evidence to decide that the correlation coefficient  $\rho$  is significant.

| n | $\alpha = 0.05$ | $\alpha = 0.01$ |
|---|-----------------|-----------------|
| 4 | 0.950           | 0.990           |
| 5 | 0.878           | 0.959           |
| 6 | 0.811           | 0.917           |
| 7 | 0.754           | 0.875           |

For a sample of size n = 6,  $\rho$  is significant at the 5% significance level, if |r| > 0.811.

# Hypothesis Testing for P

### The *t*-Test for the Correlation Coefficient

A *t*-test can be used to test whether the correlation between two variables is significant. The **test statistic** is *r* and the **standardized test statistic** 

$$t = \frac{r}{\sigma_r} = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

follows a *t*-distribution with n-2 degrees of freedom.

# CORRELATION AND CAUSATION

The fact that two variables are strongly correlated does not in itself imply a cause-and-effect relationship between the variables.

If there is a significant correlation between two variables, you should consider the following possibilities.

- 1. Is there a direct cause-and-effect relationship between the variables? Does *x* cause *y*?
- 2. Is there a reverse cause-and-effect relationship between the variables? Does *y* cause *x*?
- 3. Is it possible that the relationship between the variables can be caused by a third variable or by a combination of several other variables?
- 4. Is it possible that the relationship between two variables may be a coincidence?

# Linear Regression

# SIMPLE REGRESSION

A statistical model that utilizes <u>one</u> **quantitative** *independent* variable "X" to estimate the **quantitative** *dependent* variable "Y."

- The purpose of regression is to estimate, explain. Predict and evaluate the relation between variables.
- Linear and non- linear regressions relate to how we have entered the coefficients in the model.
- Linear regression estimates the coefficients of the linear equation, involving one or more independent variables that best predict the value of the dependent variable.

# ASSUMPTIONS

- Linearity the Y variable is linearly related to the value of the X variable.
- Independence of Error the error (residual) is independent for each value of X.
- Homoscedasticity the variation around the line of regression be constant for all values of X.
- Normality the values of Y be normally distributed at each value of X.

## RESIDUALS

After verifying that the linear correlation between two variables is significant, next we determine the equation of the line that can be used to predict the value of *y* for a given value of *x*.



Each data point  $d_i$  represents the difference between the observed *y*-value and the predicted *y*-value for a given *x*-value on the line. These differences are called **residuals**.

# REGRESSION LINE **Example**:

Find the equation of the regression line.

| X             | У             | XY            | $X^2$           | $y^2$             |
|---------------|---------------|---------------|-----------------|-------------------|
| 1             | - 3           | - 3           | 1               | 9                 |
| 2             | - 1           | -2            | 4               | 1                 |
| 3             | 0             | 0             | 9               | 0                 |
| 4             | 1             | 4             | 16              | 1                 |
| 5             | 2             | 10            | 25              | 4                 |
| $\sum x = 15$ | $\sum y = -1$ | $\sum xy = 9$ | $\sum x^2 = 55$ | $\Sigma y^2 = 15$ |

$$m = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2} = \frac{5(9) - (15)(-1)}{5(55) - (15)^2} = \frac{60}{50} = 1.2$$

Continued.

$$b = \overline{y} - m\overline{x} = \frac{-1}{5} - (1.2)\frac{15}{5} = -3.8$$

The equation of the regression line is



# REGRESSION LINE **Example**:

The following data represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday.

- a.) Find the equation of the regression line.
- b.) Use the equation to find the expected test score for a student who watches 9 hours of TV.

| Hours, <i>x</i> | 0    | 1    | 2    | 3    | 3    | 5    | 5    | 5    | 6    | 7    | 7    | 10   |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Test score, y   | 96   | 85   | 82   | 74   | 95   | 68   | 76   | 84   | 58   | 65   | 75   | 50   |
| XY              | 0    | 85   | 164  | 222  | 285  | 340  | 380  | 420  | 348  | 455  | 525  | 500  |
| $X^2$           | 0    | 1    | 4    | 9    | 9    | 25   | 25   | 25   | 36   | 49   | 49   | 100  |
| $y^2$           | 9216 | 7225 | 6724 | 5476 | 9025 | 4624 | 5776 | 7056 | 3364 | 4225 | 5625 | 2500 |

 $\sum x = 54$   $\sum y = 908$   $\sum xy = 3724$   $\sum x^2 = 332$   $\sum y^2 = 70836$ 

#### **REGRESSION LINE Example continued**:

$$m = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2} = \frac{12(3724) - (54)(908)}{12(332) - (54)^2} \approx -4.067$$

$$b = \overline{y} - m\overline{x}$$
$$= \frac{908}{12} - (-4.067)\frac{54}{12}$$
$$\approx 93.97$$

 $\hat{y} = -4.07x + 93.97$ 



**REGRESSION LINE Example continued**:

Using the equation  $\hat{y} = -4.07x + 93.97$ , we can predict the test score for a student who watches 9 hours of TV.

$$\hat{y} = -4.07x + 93.97$$
  
=  $-4.07(9) + 93.97$   
=  $57.34$ 

A student who watches 9 hours of TV over the weekend can expect to receive about a 57.34 on Monday's test. VARIATION ABOUT A REGRESSION LINE To find the total variation, you must first calculate the total deviation, the explained deviation, and the unexplained deviation.

> Total deviation =  $y_i - \overline{y}$ Explained deviation =  $\hat{y}_i - \overline{y}$ Unexplained deviation =  $y_i - \hat{y}_i$



# VARIATION ABOUT A REGRESSION LINE

The **total variation** about a regression line is the sum of the squares of the differences between the *y*-value of each ordered pair and the mean of *y*.

Total variation =  $\sum (y_i - \overline{y})^2$ 

The **explained variation** is the sum of the squares of the differences between each predicted *y*-value and the mean of *y*.

Explained variation =  $\sum (\hat{y}_i - \overline{y})^2$ 

The **unexplained variation** is the sum of the squares of the differences between the *y*-value of each ordered pair and each corresponding predicted *y*-value.

Unexplained variation =  $\sum (y_i - \hat{y}_i)^2$ 

Total variation = Explained variation + Unexplained variation

# COEFFICIENT OF DETERMINATION

The coefficient of determination  $r^2$  is the ratio of the explained variation to the total variation. That is,

 $r^2 = \frac{\text{Explained variation}}{\text{Total variation}}$ 

## Example:

The correlation coefficient for the data that represents the number of hours students watched television and the test scores of each student is  $r \approx -0.831$ . Find the coefficient of determination.

 $r^2 \approx (-0.831)^2$  $\approx 0.691$ 

About 69.1% of the variation in the testscores can be explained by the variationin the hours of TV watched. About 30.9%of the variation is unexplained.

THE STANDARD ERROR OF ESTIMATE When a  $\hat{y}$ -value is predicted from an *x*-value, the prediction is a point estimate.

An interval can also be constructed.

The **standard error of estimate**  $s_e$  is the standard deviation of the observed  $y_i$ -values about the predicted  $\hat{y}$ -value for a given  $x_i$ -value. It is given by

$$s_e = \sqrt{\frac{\sum(y_i - \hat{y}_i)^2}{n - 2}}$$

where *n* is the number of ordered pairs in the data set.

The closer the observed *y*-values are to the predicted *y*-values, the smaller the standard error of estimate will be.

# THE STANDARD ERROR OF ESTIMATE

### Example:

The regression equation for the following data is

$$\hat{y} = 1.2x - 3.8.$$

Find the standard error of estimate.

| X <sub>i</sub>                     | $y_i$                                            | $\hat{y_i}$                    | $\left  (y_i - \hat{y}_i)^2 \right $ |             |
|------------------------------------|--------------------------------------------------|--------------------------------|--------------------------------------|-------------|
| 1                                  | -3                                               | -2.6                           | 0.16                                 |             |
| 2                                  | -1                                               | -1.4                           | 0.16                                 |             |
| 3                                  | 0                                                | -0.2                           | 0.04                                 |             |
| 4                                  | 1                                                | 1                              | 0                                    |             |
| 5                                  | 2                                                | 2.2                            | 0.04                                 | Unounlained |
|                                    |                                                  |                                | $\Sigma = 0.4$                       |             |
| $s_e = \sqrt{\frac{\sum(y_i)}{n}}$ | $\frac{(-\hat{y}_i)^2}{-2} = \sqrt{\frac{0}{5}}$ | $\frac{0.4}{-2} \approx 0.365$ |                                      | - variation |

The standard deviation of the predicted y value for a given x value is about 0.365.

# THE STANDARD ERROR OF ESTIMATE

### Example:

The regression equation for the data that represents the number of hours 12 different students watched television during the weekend and the scores of each student who took a test the following Monday is

 $\hat{y} = -4.07x + 93.97.$ 

Find the standard error of estimate.

| Hours, $X_i$                | 0     | 1     | 2     | 3     | 3      | 5     |
|-----------------------------|-------|-------|-------|-------|--------|-------|
| Test score, $y_i$           | 96    | 85    | 82    | 74    | 95     | 68    |
| $\hat{y}_i$                 | 93.97 | 89.9  | 85.83 | 81.76 | 81.76  | 73.62 |
| $(y_i - \hat{y}_i)^2$       | 4.12  | 24.01 | 14.67 | 60.22 | 175.3  | 31.58 |
|                             |       |       |       |       |        |       |
| Hours, <i>x<sub>i</sub></i> | 5     | 5     | 6     | 7     | 7      | 10    |
| Test score, $y_i$           | 76    | 84    | 58    | 65    | 75     | 50    |
| $\hat{y}_i$                 | 73.62 | 73.62 | 69.55 | 65.48 | 65.48  | 53.27 |
|                             |       |       | 1     |       | 0.0 (0 | 10 10 |

Continued.

## THE STANDARD ERROR OF ESTIMATE

### Example continued:

$$\sum (y_i - \hat{y}_i)^2 = 658.25$$
Unexplained  
variation
$$s_e = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}} = \sqrt{\frac{658.25}{12-2}} \approx 8.11$$

The standard deviation of the student test scores for a specific number of hours of TV watched is about 8.11.

# **Multiple Regression**

## **MULTIPLE REGRESSION MODELS**



MULTIPLE REGRESSION EQUATION In many instances, a better prediction can be found for a dependent (response) variable by using more than one independent (explanatory) variable.

For example, a more accurate prediction of Monday's test grade from the previous section might be made by considering the number of other classes a student is taking as well as the student's previous knowledge of the test material.

A **multiple regression equation** has the form  $\hat{y} = b + m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots + m_k x_k$ where  $x_1, x_2, x_3, \dots, x_k$  are independent variables, *b* is the *y*-intercept, and *y* is the dependent variable.

# MULTIPLE REGRESSION

- Interpreting a Multiple Regression Equation
- First, let us review how to interpret a bivariate regression equation.
- In the equation
- $\circ$  y=  $\alpha$  + b<sub>1</sub>X<sub>1</sub> + e
- $\alpha$  = the predicted value of y when X<sub>1</sub> =0
- **b**<sub>1</sub>= for every one unit increase in **X**<sub>1</sub>, we predict y to increase by **b**<sub>1</sub>

## MULTIPLE REGRESSION

• Let us say we had the following multiple regression equation:

- $y = \alpha + b_1 X_1 + b_2 X_2 + e_1$
- We interpret the equation in the following way:
- $\alpha$  = the predicted value of y when all X's =0
- $b_1$  = for every one unit increase in  $X_1$ , we predict y to increase by  $b_1$ , holding all other X's equal.
- $b_2$ = for every one unit increase in  $X_2$ , we predict y to increase by  $b_2$ , holding all other X's equal.



# HOW TO TEST HYPOTHESES IN MULTIPLE REGRESSION

- $t_1 = \underline{beta_1}$  for the first independent variable
- stand err  $b_1$
- And
- $t_2 = \underline{beta_2}$  for the second independent variable
- stand err  $b_2$
- And if you have three independent variables
- $t_3 = \underline{beta_3}$  for the third independent variable

• stand err  $b_3$ 

